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Motivation

1 Why does one need to think beyond LSTMs?

2 Sequential processing doesn’t allow parallelization
Path length = O(n)
RNNs need O(n) steps to process a sentence of length n
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Motivation

1 (Despite the LSTM/GRU) RNNs need attention to deal with
long-range dependencies

2 Since attention enables access to any state, do we need RNNs?
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Transformers

1 Introduced by Vaswani et al.
NeurIPS 2017

2 Sequnce to sequence modeling
without RNNs

3 Transformer model is built on
self-attention (no recurrence or
convolutions)
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Transformers

Credits: Jay Alammar
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Transformers

Credits: Jay Alammar

1 The Encoding module has a
stack of encoders

2 Same structure different
parameters

3 Similarly, the decoding module
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Transformers

Credits: Jay Alammar

1 Encoder first has a
self-attention layer

2 Looks at the other words while
encoding a specific word

3 Next a (same) feed-forward
NN is applied at all positions
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Attention vs Self-attention

1 Encoder-Decoder Attention
looks

2 From: a decoder (current)
state

3 To: all the encoder states

1 Self-Attention looks
2 From: each state from a set of

states
3 To: all other states in the

same set
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Transformers

Credits: Jay Alammar

1 Decoder has both the layers
(self-attention and shared
feed-forward)

2 But, in the middle it has an
encoder-decoder attention
layer
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Why the name ‘Transformer’?

1 Transforms a set of vectors in some representation space into a
corresponding set of vectors (same dimensionality) in some new space

2 Goal: new space will have a richer internal representation that is
better suited to solve the downstream task
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Transformers-Encoding

1 Start with turning each word into a vector at the bottom-most
encoder

2 Others receive a list of vectors from the encoder immediately below

Credits: Jay Alammar
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Self-attention in Encoder vs. Decoder

1 Who is doing: all source tokens

2 What are they doing (repeat)
look at each other
update representations

1 Decoder
2 Who is doing: target token at

each time step
3 What are they doing (repeat)

looks at previous target
tokens (self-attention)
looks at source
representations
(encoder-decoder attention)
update representation
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Transformers-Encoding
1 Each word flows through the two layers of the encoder through its

own path

2 Self-attention layer has dependencies among them. However, the path
length is O(1)

Credits: Jay Alammar
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Self-Attention

1 The animal didn’t cross the street because it was too
tired

2 The animal didn’t cross the street because it was too
wide

3 What does ‘it’ refer to?
4 Easy for humans, but not so much for the traditional Seq2Seq models
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Self-Attention

1 As the model processes each
word, self-attention attends
other positions in the i/p
sequence to encode better

2 Unlike RNNs, we don’t keep
hidden states from previous
positions here!

Credits: Jay Alammar
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Attention weights

1 Input tokens x1, x2, . . . xN

2 Output tokens y1, y2, . . . yN
3 yn =

∑N
m=1 anm · xm

4 amn ≥ 0 and
∑N

m=1 amn = 1 Why?
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How to compute the Attention weights?

1 A simple way is to use the ‘dot product’ self-attention

2 anm = exp(xT
n xm)∑N

m′=1 exp(xT
n x′

m)

3 Y = Softmax[XXT]X
4 The transformation from X to Y is fixed; has no capacity to learn

from the data
5 Each of the feature values in a token plays an equal role in

determining the attention weights
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Some terminology from Information Retrieval

1 Consider a streaming platform and the problem of choosing which
movie to watch

2 One approach would be
3 Associate each movie with a list of attributes (genre, actors,

technicians, length, year, etc.) → Key
4 These form a catalog of movies to be searched for
5 The movie file itself is the Value
6 User’s input of desired attributes → Query
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Self-Attention

1 Q = XW(q)

2 K = XW(k)

3 V = XW(v)

4 Y = Softmax[QKT]V
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Self-Attention

Credits: Jay Alammar
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Self-Attention

Credits: The Bishop’s book
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Scaled Self-Attention

1 Gradients of the softmax become exponentially small for large input
magnitudes

2 To prevent this, the QKT is scaled before the softmax
3 If the elements of q and v vectors are independent N(0, 1)

distributed, the variance of the dot product → Dk

4 Hence, normalize the product by the standard deviation
Y = Attention(Q, K, V) = Softmax[QKT

√
Dk

]V
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Multi-headed Self-Attention

1 There may be multiple patterns of attention that are relevant at the
same time

2 E.g., some patterns relevant to the ‘tense’ while others might be
associated with the ‘vocabulary.’
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Multi-headed Self-Attention

Credits: Jay Alammar
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Multi-headed Self-Attention

1 Expands the model’s ability to focus on different relevant positions in
the i/p

2 Enables different ‘representational subspace’
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Transformer Layers

1 Neural nets benefit greatly from the depth

2 → stack multiple self-attention layers
3 To improve the training efficiency, introduce residual connections

(requires to maintain the dimensionality)
4 Followed by Layer normalization

Z = LayerNorm[Y(X) + X]
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Transformer Layers

1 Output vectors are constrained to lie in the subspace spanned by the
i/p vectors

2 Enhance the expressive capability/flexibility by post-processing using
a nonlinear neural net (MLP)

3 This should not affect the transformer’s ability to process variable
length i/p

4 Same share net applies to all the o/p tokens (followed by residual
connection and normalization)
X̃ = LayerNorm[MLP[Z] + Z]
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